

Lacticaseibacillus zeae subsp. silagei, isolated from corn silages

Grabner F.M.¹, Grabner H.M.¹, Schein M.¹,

Weidenholzer E.¹, Rückert-Reed C.², Busche T.³, and **Marlene Buchebner-Jance**¹

1Lactosan GmbH & Co. KG, Industriestraße West 5, 8605 Kapfenberg, Austria 2Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany 30mics Core Facility NGS, Medical School OWL & CBTec, Bielefeld University, Bielefeld, Germany

In a screening project at 45°C, two rod-shaped, non-motile, non-spore-forming, facultative anaerobic, Gram-stain positive lactic acid bacteria, designated as EB0058^T and SCR0080, were isolated from corn silages. They were characterised using a polyphasic approach and identified as novel subspecies of Lacticaseibacillus zeae [1].

MATERIAL & METHODS

- Chun, Oren et al. proposed the computation of the overall genome-related index (OGRI) [2]. They suggest the species boundary to be an average nucleotide identity (ANI) value between 95-96% or a digital DNA-DNA-hybridisation (dDDH) value of 70%. The Genome-to-Genome Distance Calculator calculated the dDDH value with recommended formula 2 [3,4]. The ANI values were calculated using the JSpecies Web Server with BLAST+ mode [5] (Figure 1).
- Growth tests were conducted in MRS broth with a range of parameters, including temperature (5 to 55°C), pH (3.0 to 10.5), NaCl salt concentrations (4% w/v to 10% w/v) and KCl salt concentrations (6% w/v, 8.4% w/v and 10.8% w/v). Using the commercially available test kit API 50 CH system (bioMèrieux), the capacity for carbohydrate metabolism was measured (Table 1).

RESULTS & DISCUSSION

Figure 1. ANI and dDDH (formula 2) values for strains EB0058^T, SCR0080 and related species.

	Group A				Group B									
	L. zeae subsp. silagei			L. zeae subsp. zeae										
	1	2	3	4	5	6	7	8	10	11	12	13		
[1] <i>L. zeae</i> subsp. <i>silagei</i> EB0058 ^T	-	99.9	99.9	99.9	96.3	96.3	96.3	96.4	93.7	93.6	93.7	94.1		
[2] <i>L. zeae</i> subsp. <i>silagei</i> SCR0080	99.6	-	99.9	99.9	96.3	96.3	96.2	96.3	93.7	93.6	93.8	93.8		
[3] <i>L. zeae</i> subsp. <i>silagei</i> UD2202	99.8	99.9	-	99.9	96.3	96.2	96.2	96.3	93.7	93.6	93.7	93.7		
[4] <i>L. zeae</i> subsp. <i>silagei</i> CECT9104	99.8	99.9	99.3	1	96.3	96.3	96.2	96.3	93.7	93.6	93.8	93.7		
[5] <i>L. zeae</i> subsp. <i>zeae</i> DSM 20178 ^T	70.8	70.7	70.6	70.7	-	100	99.3	99.5	93.6	93.5	93.5	94.0		
[6] <i>L. zeae</i> subsp. zeae KCTC 3804 ^T	70.8	70.7	70.5	70.7	100	-	99.2	99.5	93.6	93.5	93.5	93.9	ANI	
[7] <i>L. zeae</i> subsp. <i>zeae</i> CRBIP24.58	70.5	70.2	70.3	70.4	95.6	95.5	-	99.5	93.6	93.5	93.5	93.7	^	
[8] <i>L. zeae</i> subsp. <i>zeae</i> FBL8	71.5	71.5	71.3	71.5	95.9	95.7	97.3	-	93.6	93.5	93.6	93.9		
[10] L. parahuelsenbergensis LD0937 ^T	54.2	54.1	53.8	54.2	53.9	54.1	54.3	54.4	i	95.9	95.7	95.2		
[11] <i>L. styriensis</i> SCR0063 ^T	54.8	54.7	54.5	54.8	54.6	54.8	54.4	55,0	67.6	-	95.9	95.2		
[12] L. huelsenbergensis DSM 115425 ^T	54.3	54.2	53.9	54.2	53.4	53.5	53.4	54.2	66.5	65.9	-	95.4		
[13] <i>L. casei</i> DSM 20011 ^T	57.1	56.9	56.5	56.9	57.3	57.4	56,0	57.4	64.1	64.9	63.9	-		
dDDH <-														

whole-genome sequencebased characterization, EB0058^T and SCR0080, together with two other strains available at NCBI GenBank, were separated into a distinct clade from *Lacticaseibacillus zeae* DSM 20178^{T.}

In contrast, comparing the new subgroup to all publicly available genomic sequences of *L. zeae* strains including the type strain DSM 20178^T showed dDDH values between 70.2% - 72.5% and ANI values between 96.2% - 96.3% (Figure 1).

Table 1. Differential phenotypic and growth characteristics of the two isolates and their phylogenetically closest related type strain *L. zeae* DSM 20178^T.

	Growth at:				Acid production from:					
Strain	5°C	pH 10	9% NaCl	8.4% KCl	L-Arabinose	Sorbitol	Maltose	D-Arabitol		
EB0058 ^T	+	_	+	+	+	+	+	+		
SCR0080	+	_	+	+	+	+	+	+		
L. zeae DSM20178 ^T	_	+	_	W	_	_	_	_		

ONCLUSION

Based on their chemotaxonomic, phenotypic, and phylogenetic characteristics, EB0058^T and SCR0080 represent a new subspecies of L. zeae. The name Lacticaseibacillus zeae subsp. silagei is proposed with the type strain EB0058^T (=DSM 116376 =NCIMB 15474).

References:

- [1] Grabner F, M., Grabner H, M., Schein, H., Schrank, A., Töglhofer, M., Weidenholzer, E., Busche T, Rückert-Reed C and Buchebner-Jance M (2024). Lacticaseibacillus parahuelsenbergensis sp. nov., Lacticaseibacillus styriensis sp. nov. Lacticaseibacillus zeae subsp. silagei subsp. nov., isolated from different grass and corn silage. International Journal of Systematic and Evolutionary Microbiology, 74(7), 006441.
- [2] Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, Da Costa MS et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68(1):461–6
- [3] Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; (50)D801-D807.
- [4] Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60.
- [5] 39. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpecies WS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32(6):929–31.